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INTRODUCTION 

The results of theoretical investigations undertaken within the frames of the present 

project brought to life a new approach to modelling of thermoviscoelastic damageable 

composite materials with laminated or fibrous structures. The mathematical models for 

dynamical deforming and failure of such composite materials is described in details in the 

interim reports [1,2]. The main results of the investigations are the following. 

The structural breakup of composite materials has three characteristic stages: 

1. Loading of the structure and accumulation of irreversible damages. 2. Fracture 

occuring in the zones where failure criterion is satisfied. 3. Post-fracture deformations, 

formation of cracks and fragments. 

At the present phase of the Project the main attention was paid to the first two 

stages of the process. It was stated that failure generated from quasi-statically applied 

over-pressures differs significantly from dynamically applied over-pressures. Quasi-static 

matrix cracking may lead to "failure" in the form of a leak or, as a worst case, catastrophic 

failure involving matrix cracking and formation of segments attached to each other by 

the fibers. Pressures applied dynamically (with relatively high amplitudes and rates of 

loadings) force multiple fractures in all of the wall's constituent materials and result in 

the generation of many small particles. 

A two-phase failure model was worked out for composite materials wherein irreversible 

work for damage production was used to determine the extent of damage accumulated 

in local regions of the structure. The model computes irreversible damage based on the 

growth of pores and the formation of dislocations and delaminations of layers. The cha- 

racteristics of these processes are modeled as scalar quantities. The amount of damage 

that a material experiences is measured by the specific dissipation D. All of the indi- 

vidual damage processes are lumped together into the global quantity D. Failure of a 

material is determined by comparing D to an experimentally determined material pro- 

perty D*. D* represents the summation of all irrecoverable material motions upon failure 

of the laminate. D* is presently a volummetric equivalent failure criterion analogous to a 

spherical failure envelope. The value of D* remaines unknown in the equations [1,2] but 

experimental guidance describing one of the possible methods of determining the scalar 

value of D* for spherical envelope was provided in the Third Quaterly Report [3]. 

The worked out failure model considers 3-D stresses. Specific dissipation D is being 

accumulated in each space element as the pressure loading continues. When D = D* is 

attained the element is assumed to have locally failed. The zones of the structure wherein 

the failure criterion D — D* is satisfied are considered to be damaged. A detailed fracture 



progression model and methods of determining of fragments' characteristics have not been 

worked out yet for the thermoviscoelastic laminated composite materials. 

To demonstrate the utility of the model a problem of dynamical deforming and for- 

mation of the failure zones in an axisymmetrical shell of the laminate under the influence 

of internal loading was regarded. 

The governing system of equations for thermoviscoelastic laminates was written in the 

lagrangian variables to be applied for the description of behaviour of an axisymmetrical 

shell. The numerical model describing the dynamical deforming of the shell made use of 

a finite element approach. To determine the rates of internal wall loading the model was 

incorporated into a hydrocode enabling to solve the problems of shock waves propagation 

and reflections in gas in a closed vessel after internal explosion. 

The Part I describes the mathematical model being used for the solution of the problem 

of dynamical deforming of an axisymmetrical laminated composite containment under the 

influence of internal loading in reflected shock waves. The model is based on the assump- 

tions of the thin shell theory and enables to evaluate the accumulation of damges in the 

shell and the growth of spesific dissipation and damage parameters responsible for dama- 

ges in tension, shear and delamination. The model incorporates three additional material 

constants characterizing the resistance of the laminate to accumulating the damages. The 

numerical method is also described briethly. 

The Part II describes the results of numerical modelling of several problems characte- 

rised by different internal loading pattern. The numerical solution of those problems was 

undertaken to demonstrate the utility of the worked out model for damageable laminated 

composite material being incorporated into a hydrocode. 



Chapter 1 

Part I. Mathematical model for 

damageable thermoviscoelastic 

laminated composite shell. 

1.1     Foreword. 

The present Part describes the model for damageable thermoviscoelastic laminated 

composite material adapted for solving the problems of dynamical deforming and failure 

of axisymmetrical thin-walled containments in internal loading. Two possible cases of 

dynamical loading are regarded: uniform and nonuniform loading. In the last case the 

loads are determined with the help of a hydrocode modelling shock waves propagation in 

gas inside a closed vessel and reflections from the walls of the vessel. The shock waves 

inside the vessel originate due to a definite discontinuity in the initial conditions simulating 

an explosion. The initial zone of high pressure and density gas can be located in any place 

on the axis of symmetry and be of a variable volume. 

The dynamical loads bring to an expansion of the walls of the containment and accu- 

mulations of damages. Since the actual criterion (the value of critical specific dissipation 

D* for composites remains unknown the numerical programme continues working after 

the assumed critical values of dissipation are surpassed in some zones or even everywhere. 

To terminate the programme until the results loose the physical sence additional criteria 

are used making it possible to avoid overshoot in the damage parameters. That makes it 



possible for us to follow the dynamics of the evolution of the zones in the shell wherein the 

values of the specific dissipation surpass the assumed critical values. In fact the nume- 

rical simulations based on the present model should be terminated as soon as D reaches 

critical value for anyone of the elements because the model does not take into account 

the changes in the stresses and strains of the neighbouring elements in case of a failure of 

one of the elements. The results of the present modelling are destined to demonstrate the 

applicability of the model and to serve the base for the further development of composite 

breakup modelling. 

1.2 Governing system of equations for dynamical 

deforming of an axisymmetrical composite con- 

tainment. 

The system of equation derived in the present chapter was obtained making use of the 

model and notations described in details in [2]. Thus the general description of the model 

is not given here. If one applies results of our previous investigations (see reports [1-3]) 

to an axisymmetrical thick shell, one will obtain the following results. 

Let x,r be the physical cylindrical coordinate system, and z,s - the lagrangian coor- 

dinates attached to the shell, so that the coordinate s changes along the generating line 

of the shell and z - across the shell. The equation z — 0 is satisfied on the surface gene- 

rated by a set of points laying in the middle of the shell thickness. The part z > 0 faces 

the external side of the shell (see Fig.l.) The middle surface of the shell is represented 

by function r = ro(x) in the physical coordinate system, or the parametrical system of 

equations: 

r = r0(s), x = x0{s). 

It is assumed that the displacement of the shell is represented in the following terms: 

u(z, s, t) = u°(s, t) - zQ(s, £), w(z, s, t) = w°(s,£), 

where u is tangential displacement directed along the generating line, and w is the normal 

displacement directed collinear to the external normale to the shell. 

With this assumption, the system of motion equations gets the following form: 

at1 r0     as r0 as 



av = La_^Q) _       _ N^   i 
ot2 r0    os h 

h2 d2Q 1 d{r0M1)      1 dr0 

12 ot2 r0     os r0 os 

Here p =< p >= cp\ + (1 — c)p2 is the effective density of material and the other terms 

in the right side are the following: 

Ki,K2 are the physical main curvatures of the shell's middle surface, so that K\ is 

inverse to the radius of curvature along the generating line, and K2 is the curvature 

in the perpendicular direction. The curvatures are determined in terms of the physical 

coordinates r°(s,t), x°(s,t) of the middle surface: 

drp d2xp   dxp d2rp dxp 
]■/■   _ ds   ds7 ds   ds2 j^   _  ds  

1/2' 

Ni, N2 are the shell tensions in the directions along the generating line and along the 

orthogonal geodesical line correspondingly: 

h/2 
I 

h 
-h/2 

h   /   aiidZ' 

where h is the initial thickness of the shell; 

Q is the rotational tension determined by: 

h/2 

Q = -    I   alz dz; 
-h/2 

Mi, M.2 are the bending moments along the generating line and perpendicular geode- 

sical line correspondingly: 
h/2 

-   \   zcrij dz. 
h  J h 

-h/2 

These tensions and moments are determined in terms of elastic deformations tensor 

components, enthropy and damadge parameters. But the elastic deformations themselves 

are determined by the values of full deformations tensor components. 
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With our assumption of linear distribution of functions across the shell thickness, the 

components of the full deformations tensor velocities are represented in the following way: 

ei(z,s,t) = Q(s,t) - zk!(s,t), e2(z,s,t) = el(s,t) - zk2(s,t), elz = e°lz. 

The linkage between the velocities of displacements and full deformations' velocities 

is the following: 

n      du°      . n Tr     .n     ü° dr0      .Q„     .0       dw°      . 0 
e? = -7T + wK*> 4 = -^r+ w°K2, 6°lz = — - u°Ku as r0 as as 

,- _de  - _edr0 

as r0 as 

The elastic deformations tensor components e1,e2,eiz and the parameters A+, A_ are 

also assumed to be distributed along the shell thickness like the components of the full 

deformations tensor. One obtains: 

ei = e° - zxi, e2 = e2- zfa, eu = e°lz, 

A+ = A°+ - zxt, A_ = A°_ - zX
A. 

The tensions and moments are expressed in terms of elastic deformations components, 

enthropy and functions of damadge parameters. 

Ni = C22e\ + C23e° - d2(r) -rfi)- - u - a 
\-u        \-u       2e° 

N2 
^o^o,/      -x       A^           AC    2e\-e\ 
C23e1 + C22e2 - d2(77 - r/o) - ~, u - - <*—TTö—, 

1 — UJ i — Ul ZC., u 

AC    e\z Q = 2Cme°lz - 3- a^ 
1-u    e°u 

( AC 

V2{C^ + C^-T^a    2el 
M   :.      ^in^.n^        AC   Jxl-Xl 

M -  h2 (c v° + c v°   AC aMzA\ 

Here the following notations are used: 

< = \/K)2 + (e°2)
2 ~ e?e° + 3(e&)', fj5 = B+9A°+, 

a, to are damadge parameters and Q,A,A,C are constants. 



The damadge parameters, having zero values at initial state of undamadge material, 

are evaluated using the following differential kinetic equations. 

1-u      7     \l-u 

Here H(x) is the Heavyside function, .D, e*,e^, A* are constants and 

A° = X/(A^)2 + (A°_)2. 

The elastic deformations tensor terms and terms of A+, A_ which were defined above, 

are evaluated by the following set of kinetic differential equations. 

e° = e° - C«e\ - C«el + F^ + F^-^^ - ßUl - ßrf- + da(v ~ To); 
u 

e°2 = 4- C«e\ - C?4 + F^- + F^6-^ - ßUl + &£ + d«(v - ToY, 
1 — u 1 — to    Ze,. ^u 

-Xl = -k + c«xi + c?x2 - Ff^lXl^eo
X2 -ßUl -(%<£ + dJI?, 

-X2 = -k + C?xi + C?X2 - F?CaXl+X2 - ßUl + « + dJZ; 1 - u    2e°, u 

ACa e°lz 

1 — UJ el 

A°+ = -C?(e° + e°) + W^YZZ + ^ 1 - a;    2e°     + 1Q+ +   ß(jl ~ ^ 

-xi = cf (xi + ») - &+^^f+7«? - dm 

A°_ = -c7|(C; - 4)+^^r^ + 379°; 

-XA = Cffoi - X2) - 3/?2
+^^ - 37^- 

u 

The expressions above use the following notations. 

Constants: 

Ci   = Q'l2Cl2 + O-22C22 + Ö23C23,   C2   = QI2C12 + Ct23C22 + 0-'22C23, 

9 



Cf = ß+c12 + ß£(C22 + c23), c
ß

2 = c22 - c23, 

F = a-22 + Q'23, da = «12^1 + Fd2, dß = /^di + 2ß£d2. 

Variables: 

„o _ R  ,Ao     mr    Tu     AADa;AA°     0 _ 0      AA^AÄ
1 o 

A^ 

v D   /        M,   AA^AX+       x        D   /        A^   ,   AA£^AX- 

The enthropy 7/ averaged by the thickness of the shell is evaluated from the following 

equation. 

r,T = M(e? - e°) + N2(i°2 - e°) + 2Q(4 - e°lz) - A°+q°+ - A_g° + AcJ2 + A*2 + AAÜ&. 

The temperature is evaluated by elastic deformations and enthropy: 

T = T0-d2(e? + e°) + P(r/-^). 

If we regard axisymmetrical closed shell, then there are at least 2 places of the shell 

laying on the axis. For the points belonging to the axis some expressions and equations 

change. 

The expressions for curvatures K\ and K2 will be: 

K2 = Kx 

d2xp drp 
ds2    ds 

I drp | 
ds 

The equations of motion change to: 

u   =   0 
d2w° dö 1 p~w = 2Sr" NiKi" N*K*+ ip»(-hM 

e = o 

Linkage between the velocities of deformations and velocities of displacements changes 

to: 
r)ii° flip 

$ = ^+v>°Ku e°2 = ^ + ii?K2, 4 = 0, 

k  -k  -** h,l — K2 — ——. 
OS 

10 



One can note that the following linkages must take place on the axis: 

Ni =N2, Q = 0, Mi = M2, ex = e2, eX2 = 0, kx = k2. 

The present mathematical model enables to determine the parameters of an axisym- 

metrical composite damageable shell under the influence of internal loading. 

1.3    Numerical modelling. 

The mathematical model described above was used to construct numerical model. 

This numerical model is based on finite elements approach, but since the equations contain 

time-derivative terms in significantely complex nonlinear form, the classical finite elements 

approaches using variational principles cannot be feasibly applied to the problem. We used 

the so-called semi-discrete Galiorkine's method [7] with some modifications. Details of 

calculations are listed below. 

We have got the following vector of variables, changing with time and space: 

W = («o>o,0,MO,w°,e,e?,e°,e°z,fci,A;2, 

e?,e°2,e°lz,xi,X2, A+, A0. ,xA,xj,w>">v*,v)- 

Each member of the vector W has a governing differential equation evaluating it with 

time, so the whole set of differential equations can be expressed as: 

dW 
°— = dW(W). 

The set of expressions dW(W) uses some significant variables not beloning to W (no 

special differential equations for them). We can collect them in the vector V: 

V = V{W,P) = {x°y,KuK2,NuN2,Q,MuM2,T). 

Note that P, i.e. loading on the wall, is obtained as an external parameter or taken from 

some external calculations (hydrocode application for example), and it is used to calculate 

the vector V. 

The vector W consists of 2 sub-vectors: W = (V^i, W2) so that the first sub-vector Wx 

contains variables, which governing equations contain space derivatives in the right side. 

11 



The equations for W2 variables do not contain such derivatives explicitly. The sub-vector 

W\ is the following: 

The finite elements technique is used to evaluate expressions for dW\. 

The axisymmetrical shell is represented by a computational domain with Lagrangian 

coordinates (s, z). In our case, variables change only with the coordinate s. As we do not 

regard branches in this approach, then the domain is a segment sin[0,S]. The value of 

S is the length of the generating line from one pole of the shell to another. We cut the 

domain into elements, which are segments [sj,si+i], where 0 < i < N - 2, so obtaining 

N — 1 elements bounded by N nodes. 

Each variable is assumed to have linear distribution along each element, so that the 

internal values are expressed linearely by the values in the nodes: 

v(s) = Vi H (s - Si), 

where v is any one of the variables, s e [si,si+1], and v{ is value in the i-th node. 

The equations evaluating vector W\ can be represented in more detailed form: 

cdW1 _ Edr°   |  8F  | c 

dt        r° ds       ds 

We regard any node i and the elements adjacent to it. In our case, there are generally 

2 elements placed to the left and to the right except for the leftmost and rightmost nodes 

both laying on the axis. We integrate the equations on halves of each adjacent elements, 

and using our assumption of linear distribution, each integral can be evaluated analytically 

thus simplifying calculations. As there are no second-order derivatives in the right side 

of the equations, then the assumption of linear distribution is enough to obtain correct 

expressions. For the right side we obtain an expression depending on 3 successive nodal 

values of W and V as result of integrating. Integrating the left side and equating it to 

right, we obtain implicit set of linear equations with the same matrix evaluating dWi. In 

our case matrices of all the equations are 3-diagonal, and this helps us to invert them 

with direct method of binary substitution. 

The complete operation-of transfer from the time layer n to the next layer consists of 

following steps. 

a. Determine the timestep value ht according to the Courant criterion modified to 

avoid overshoots in evaluating kinetic equations. 

b. Get the values of loading Pn at the current time moment. 

c. Evaluate Vn = V(Wn,Pn). 

12 



d. Evaluate dWn consisting of dW™ and dW%. For the first set of equations we apply 

finite elements technique, the second set is simply evaluated from expressions. 

e. Predictor - preliminary evaluation of W to the next time layer: 

W = Wn + ht ■ dWn. 

f. Increase time counter and get the loading Pn+1 on the next layer. 

g. Evaluate V = V{W,Pn). 

h. Evaluate dW using the same technique as in the item d. 

i. Corrector stage - obtain values of W on the next time layer: 

Wn+l = Wn + h(dW + dWny 

j. Filtering the probable non-physical oscillations of velocities of displacements. This 

stage was suggested in [7]. 

13 



Chapter 2 

Part II. Results of numerical 

modelling. 

2.1     Foreword. 

The present Part contains the description of the results of numerical modelling of dyna- 

mical deforming of the walls of an axisymmetrical containment made of thermoviscoelastic 

laminated damageable composite material under the influence of internal loading. Two 

types of internal loading were regarded to demonstrate the utility of the composite model. 

The first one was characterised by a uniform increase of pressure in the containment that 

brought to an expansion of the shell and accumulation of damages wherein nonuniformity 

was introduced only by the initial difference of curvatures in different zones of the shell. In 

fact it was shown that for the case of uniform internal loading of a shell having the shape 

different from a spherical one there appeared nonuniformities in accumulation of damages 

and specific dissipation was maximal in the zones of maximal curvature gradients. 

The second type of loading regarded was the one in reflected shock waves caused by 

internal explosion in a gas-filled containment. The rates of wall loading were determined 

having incorporated the present composite shell model into a hydrocode. To garantee the 

axisymmetrical loading pattern the centre of the explosion could be placed in any place of 

the axis of symmetry of the shell. A more detailed description of the model determining 

the wall loading and of the flow pattern in the gas inside the containment will be given 

below. 

14 



2.2    Determining the internal loading of a contain- 

ment. 

The internal nonuniform loading of the walls of the containment was determined within 

the frames of an assumption that the containment was filled in with an inert or chemically 

reacting gas mixture. The internal explosion was simulated by introducing discontinuity 

in the initial conditions: assigning high pressure and density values for the parameters 

inside a relatively small zone on the axis of symmetry. To describe the originating flow a 

gasdynamical model for turbulent flows in confined volumes was used. 

2.2.1     Mass balance equations in the gas phase. 

The mass balance of the k-th. component is: 

dt{pk) + V • (pkuk) = Mk, 

where pk is the density of the component (mass per gas phase volume unit), uk is the 

velocity vector of this component and Mk is mass flux to the k-th component from the 

other components. 

The following notations and definitions are introduced: p = T,Pk for gas phase density, 
k 

pu = E pkUk for gas phase general velocity vector, wk - uk - u for the velocity of k-th. 
k 

component diffusion, Ik = pkvok for the diffusive flux of k-th. component, Yk = pk/p for 

mass fraction of the k-th. component so that: 

£n = l, £4 = o. 
k k 

With these definitions the mass balance equation for the fc-th component in the gas 

phase can be transformed into: 

dt(pYk) + V ■ (puYk) = Mk-V-Ik. (1) 

15 



After summing up the equations (1) for all the components the general mass balance 

equation for the gas phase is obtained: 

dt(p) + V-(pu) = 0. (2) 

After Favre averaging of the equation (2) with the p weight the averaged mass balance 

equation for the gas phase is obtained: 

dt(p) + V • (pü) = 0- (3) 

By averaging (1) in the same way and using the notation I{ = pu"Yk" for the turbulent 

diffusion flux the averaged mass balance for the k-th. component in the gas phase is 

obtained: 

dt(pYk) + V • (puYk) = M~k-V-(h + It
k). (4) 

2.2.2     Momentum equation for the gas phase. 

For the k-th component in the gas phase the momentum equation is: 

dt(pkuk) + V • (pkUk ® Uk) = -Vpfc + pk9 + V • Tk + /Cfc, 

where pk is the partial pressure in the component, rk is the partial viscous tensor, g is 

the gravity acceleration vector and K,k is the momentum flux to the component from the 

other components. 
Summing up these equations for all components, the following equation is obtained: 

dt(pu) + V -{pü®ü) = -Vp + pg + V • r, (5) 

where: p = Y,Pk ls the pressure in the gas phase according to Dalton's law, 
k 

k 

is the condition of agreement for momentum fluxes from all the components.   It is also 

assumed that the viscous stresses tensor for multicomponents flow is r = XXrfc~ T~h®h)- 
k Pk 

Following the Favre's techniques [4] the averaging of (5) yields: 

dt(pü) + V • (pü ® u) = pg - Vp + V • (r + rf), (6) 

where r* = — pu" ® u" is the Reynolds stress tensor. 

16 



2.2.3    Energy balance equation for the gas phase. 

For each component in the gas phase it is possible to write the following energy balance 

equation: 

dt(pkEk) + V • (pkitkEk) = pkuk ■ g - V • (pkuk) - V • Iqk + V • (n ■ uk) + pk9k + £k, 

where Ek = ek + \u\ is a sum of internal and kinematic energy for the k-th. component, 

Iqk is conductive heat flux to the k-th component, 6k is the radiation heat flux, £k is the 

heat flux from the other components. It is assumed that the gas phase is a mixture of 

perfect gases, so that: 

ek = cvkT + hok,        Pk = r-—pkT, 

where T is the temperature, cvk is the heat capacity at constant volume, Wk is the molar 

mass and Rg is the gas constant,h0k is the chemical energy of the k-th component. 

The following notations for the mixture energy and generalized heat flux are used: 

k k APk A 

Iq = DV + hin - in - ^®A) • ^] = Jg + EhkIk, 
k 

zPk      Pk k 

where hk = ek + 2k- is the enthalpy of k-th component. With these notations the summing 

up of the energy balance equations for all components leads to the following equation: 

dt(pE) + V • (puE) = pu-g-V ■ (pu) - V ■ Iq + V • (r • u) + p6, (7) 

where the condition of agreement for energy exchange between the components 

k 

is taken into account. 

The terms of the second and higher orders of diffusion fluxes are neglected in the 

expression for the mixture energy. The equation of state for the gas phase and the 

expressions for the internal energy and enthalpy then take the form: 

P = R9pTY;^-,        e = XXcufeT + /i0fc),        h = Y,Yk(cpkT + h«k).        (8) 
k   Wk k k 

Averaging (7) by Favre's techniques allows to obtain: 

dt(pE) + V • (püE) = pü-9-V-(j?ü- P*SEn) - V • Tq + V • (r^ü) + p9. 
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Assuming the expression (8) to be true also for the averaged values, brings the following 

assumptions: 

£ ^T5^" « ?,        £ cvkT^ « e,        2 «V*^*" « *■ 

With these assumptions finally the averaged energy balance equation can be obtained: 

dt(pE) + V • {püE) =pü-g-V-{pü)-V-(Tq + It
q) + V- {T^U + rt-ü)+ p9.     (9) 

The notation /' = -pY, cpkYkiPT" + E{cpkf + M^ = Jl + £(cP*T + M^ is used 
k k . k . 

for the generalized turbulent heat flux. The expression for the mixture energy E — 

J2 Yk(cvkf + h0k) + ,JY + k, contains the averaged kinematic energy of turbulent pulsations 

A;(the last term is usually neglected in calculations because it is assumed to be much 

smaller than the scalar product of the averaged gas velocity). 

2.2.4    Fluxes modelling and closing the K-epsilon model. 

According to the standard &-epsilon model for compressible gas flows, the following 

model for turbulent fluxes is introduced: 

2 2 
r + Tl = -p{v + i/)(Vw + VüT - -V • HI) - -phi, 

o o 

Tk + It = -p(D + -)V-Yk, 

Tq + Jt
q = -Y,cpkp(\ + -)V-f, (10) 

k at 

where I is the unit tensor of the second order. The energy dissipation term in the equation 

(9) can be transformed as: 

V • {r^u + r' • u) = V • ((r + r*) • ü). 

The turbulent kinematic viscosity vl is modelled according to A;-epsilon model as: 

s = c£. (11) 
The model is closed then by 2 equations for the kinematic energy of turbulent pulsations 

k and its decay due to dissipation e: 

dt{pk) + V • {pule) = V • {p(v + —)Vk) +rl : Vü - pe, (12a) 
O'k 
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l/ 
dt(pe) + V • (püe) = V ■ (p{v + -)Ve) + -{CUT' : Vw - C2epe). (126) 

In this equations the Reynolds tensor rf can be modelled as: 

2 2 
r* = /M/*(Vü + VüT - -V ■ ül) - -pkl. 

ö O 

The term containing k in the last expression is negligible as well as in the expression for 

the sum of viscous and Reynolds tensors. 

The constants take the following values: 

C; = 0.09,     ak = l,    ae = 1.3,    Cu = 1.45,     C2t = 1.92,    ai = at = l. (13) 

The turbulent Prandtl and Schmidt numbers are assumed to be equal to 1 in (13). 

2.2.5    Initial and boundary conditions. 

The initial mean flow velocity in the air was supposed to be zero u = 0, but the initial 

level of turbulence was introduced: k(t ~ 0) — ko; e{t = 0) = eo- A definite volume on the 

axis of symmetry (0 < r < ro) , X\ < x < X2 was considered to be occupied by dense 

reaction products under high pressure. The rest of the containment was considered to be 

occupied by the gas of ambient pressure and density. At t = 0 the motion starts and the 

initial discontinuity in the pressure, density and temperature fields brings to formation of 

shock waves propagating inside the containment and being reflected by the walls. 

The boundary conditions on the walls of the containment are the following: 

u = 0 — the no-slip condition; 

dT      dYk      dk      de     n      ,    AT 
-— = —— = — = —- = 0 — the Neumann conditions. 
oz       az       oz      az 

2.2.6     Computational techniques. 

The calculations are carried out using two demi-steps to determine new parameters 

for the gaseous phase. 

The value of the timestep is recalculated on the base of Courant criterion. 
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The system of gasdynamics equations can be rewritten in the following vector form: 

(14) 
at        ox        or 

where 

U 

(   p   \ 

pu 

pv 

pE 

pk 

V pYk ) 

E = E H El 

pu 

pu2 + p 

puv 

puE + up 

puk 

pue 

\     puYk     ) 

I 

+ 

0 

T~xx 

'xz 

"W^iti       VTxz -f- Jqx 

Ikx 

\ 

F = F" +F 

pv 

puv 
,2 

\ 

pv  + p 

pvE + vp 

pvk 

pve 

pvYk 

( 

( 

+ -UTT 

\ 

0 

1~xz 

-Tzz 

-VTzi 

hz 

Iez 

hz 

'fcx 

Jn 

H = HH = 

0 \ 

0 

0 

0 

Pk-pe 
j:(Cl€Pk-C2ePe) 

\ Mi ) 
The formulae above contain the following notations: x,r - axial and radial coordinates re- 

spectively, u, v - mean velocity components in this coordinates, Pk is the turbulent energy 

production term (equation (12)). The superscript "H" means convection and production 

terms (hyperbolic part), "P" - generalized diffusive terms (including viscous, diffusive and 

thermoconductive terms, (parabolic part)). Note that the system (14) is mathematically 

overdefined, for Ylk^k — 1, but in numerical calculations one more equation is kept for 

the control of precision and correction of results. 

To solve the system (14) splitting by coordinates is used; it simplifies the solution and 

increases the possible timestep. The splitting is made according to MacCormack [5]. This 
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splitting represents the general operator L(At) transferring Un to the next timestep into 

Un+1, in the form: 

L(At) = Lx(Atx)Lr(Atr)Lr{Atr)Lx{Atx), 

or   L(At) = Lr{Atr)Lx{Atx)Lx(Atx)Lr(Atr). (15) 

The sequence of operators in (15) yields the condition of symmetry. To yield the condition 

of timesteps, which together with the condition of symmetry ensures the second order of 

approximation, it is necessary to have: 

At = 2Atx = 2Atr, 

so that Atx — Atr = At/2. Both sequences of operators in (28) are able to represent 

the general operator L(At); to avoid the accumulation of disagreements the sequences are 

changed at each timestep. 

Each operator itself, Lx and Lr, is also split into two parts: one part is parabolic, 

L^ or Ly, the other is hyperbolico-parabolic, L% or L^, and contains terms, which are 

not present in Lf or L,p. This gives us the MacCormack rapid solver techniques [5]. 

The parabolic operator is solved using the implicit Laasonen scheme, the hyperbolico- 

parabolic operator is solved using FCT techniques [6]. This splitting removes viscosity 

from the timestep criterion and reduces it to the Courant criterion. 

2.2.7    Results of numerical modelling of internal loading. 

The results of numerical modelling of shock waves propagation and reflection inside 

the containment are shown in Figs. 2-3. The figures show the density and pressure fields 

inside the containment for different times. The length of the cylinder was Ira, the radius 

- 0.5??2. The map of characteristic values of parameters is given in the upper right parts 

of the figures. The characteristic times are also given on the right screen. The black line 

segments on the figures reflect gas velocities. 

The initial volume where the explosion takes place can be seen in Fig.2.a illustrating 

the initial density distribution at t = 0. Expansion of hot reaction products brings to 

a formation of a ball-shape zone of a compressed gas (Fig.2.6.) that after the reflection 

from a lower wall comes to a hemispherical shape (Figs.2.c, d.). The converging rarefac- 

tion waves bring to a decrease of density behind the diverging hemispherical shock wave 

(Figs.2.e, /). On reflecting the shock from the side walls of the containment density incre- 

ases behind the reflected waves (Figs.2.g, h). The position of the reflected waves can be 

21 



easily tracked by the gradients of the velocity field. The reflected shock waves turn to be 

steeper and overtake the leading shock near the walls (Figs.2.h,i,k.) that finally brings 

to a formation of a Mach stem (Figs.2i,ra). The reflected shock waves are converging to 

the axis and bring to an increase of density after their collision (Figs.2.k, I, m). 

The zone of high density originates near the upper wall after the reflection of the 

leading shock and the secondary shocks (Figs.2.ra, n, o). The reflected shock wave pro- 

pagates faster near the walls than in the center (Figs.2.p, q, r, s.) because it meets in the 

center a more dense gas with a large accumulated axial velocity. 

The pressure field evolution shown in Figs.3.a — n gives an idea of the internal loading 

of the shell of the containment. The ball-shape shock wave is formed at the very beginning 

(Fig.3.a). In reflection of the shock wave from the nearest lower wall the loading starts 

that spreads from the axis of symmetry (Figs.3.ft, c, d, e). The converging rarefaction 

waves gradually decrease the pressure in the center (Figs.3.rf, e.) and a high pressure 

zone is present only in the primary shock wave (Fig.3.e). The intensity of the primary 

shock wave decays but a new pressure increase takes place in the transverse shock waves 

reflected from the side walls (Figs.3./,g). Converging shock waves bring to a pressure 

increase on the axis of symmetry (Figs.3./i, i). On reflecting the primary shock from the 

upper wall the pressure increases in the reflected shock wave (Figs.3.A;,Z,m.) and then 

gradually decreases due to the influence of rarefaction waves (Fig.3.n). 

This typical example of wall loading in internal explosion gives wide possibilities to 

investigate the behaviour of the model for damageable composite shell in nonuniform 

loading. 
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2.3    Dynamical deforming of walls and accumulation 

of damages. 

Here we describe the results of model calculations of shell parameters under the in- 

fluence of internal loading. The characteristic values of material parameters are given in 

the Table 1. The two cases of loading - uniform and nonuniform - are regarded. The 

characteristic value of the critical dissipation was taken arbitrary. The model incorporates 

as well three additional material constants characterizing the resistance of the laminate 

to accumulating the damages in shear, tension and delamination. The values of those 

parameters were also chosen arbitrary due to the lack of kinetic data on accumulation of 

damages in the laminates. 

2.3.1    Evolution of the shell parameters in uniform dynamical 

loading. 

The simplified case of uniform internal loading was regarded to investigate the expansion 

of the shell and accumulation of damages wherein nonuniformity was introduced only by 

the initial difference of curvatures in different zones of the shell. The internal loading was 

organized due to uniform pressure increase inside the containment up to pmax — 107Pa 

with the characteristic time 10~3s. The initial thickness of shell was h = 10~2m, initial 

radius - lm, initial length - 2m. 

Fig.^ shows the initial shape of the containment in Euler coordinate system and 

Fig.5 - in a Lagrangian one. The characteristic internal loading profile for the present 

case is shown in Fig.6. The shape of the deformed containment for the characteristic time 

5.95 ■ 10~3s is shown in Fig.7. It can be seen from the Fig.7 that the shell expanded and 

changed the curvatures. 

Figs.8 a — b show the curvature of the generating line of the cylinder for two successive 

times. Figs.9 a-b show the curvature of the orthogonal geodesical line for the same times. 

It can be seen from the figures that both curvatures have the tendency to change (increase 

or decrease) towards the mean value. 

Figs. 10 a — b show the displacements of the shells elements in the directions orthogonal 

to the surface (along the lagrangian axis z). The vertical lines in the Figs. 10 and successive 

figures indicate the places of initial discontinuities of curvatures. The local maxima of 

displacements to are found in the zones of the minimal initial curvature that corresponds 
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with the tendency of the containment to come to a spherical shape under the influence of 

a uniform loading. 

Figs.11 a — b show the displacements of the shell's elements u along the generating 

line in lagrangian coordinates s. The displacements along the s-axis have different signs 

for different elements. The positive or negative displacements are determined by the 

initial positions of the elements in respect to the boundaries and the middle point. The 

displacements of the elements located on the axis of symmetry (boundaries) and in the 

middle zone are equal to zero. The inverse symmetry in respect to the middle point is 

also evident. These results qualitatively testify the accuracy of the worked out model. 

Figs.12 a—i illustrate the velocity profiles for the orthogonal displacements for different 

times. It is seen that at the initial stage of the process velocities of displacements change 

their values and signs very rapidly. The behaviour of the velocities shows the oscillating 

character of the expansion of the shell in rapid dynamical loading. Later the attenuation 

of the oscillations takes place due to viscous dissipation and the expansion velocity is 

stabilized. 

Figs.13 a — m illustrate the velocity profiles for tangential displacements along the 

generating line for different times. The results of numerical modelling evidently illustrate 

the tangential oscillations of the elements and nonuniformities in velocity profiles caused 

by the initial difference of curvatures in different zones of the shell. Thus even in a uniform 

internal dynamical loading of shells with variable curvatures there appear nonuniformities 

in the parameters for different elements of the shell. 

Figs.14-16 show the profiles of tangential strains in both orthogonal geodesical direc- 

tions of the shell e°, e° and the strain e^ for one and the same time. It is seen from Fig.14 

that €° reaches its maximal value in the zones of largest curvature of the generating line. 

The Fig. 15 shows that the maximal values of e^ can be found in the middle zone wherein 

the radial displacements are also maximal. And local extrema of the e\z (Fig. 16) are in 

the zones of initial discontinuity of the curvature of the generating line of the shell. The 

above results correspond well with the physical nature of the phenomenon. 

Figs. 17-19 show the profiles of the corresponding elastic strains e°, e°, e\z for the same 

times. It can be seen that by that time the difference between the elastic and total 

deformations has already become significant. 

Figs.20-21 show the profiles of parameters A+ and A_ characterising the difference of 

composite components' strains in the layers plane [2]. 

Figs.22-24 show the profiles of damage parameters W,ö,WA reflecting accumulation of 

damages in tension, shear and delamination. The zones of maxima of damages in tension 

coinside with that for delamination while the zones of maxima of damages in shear are 
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located near the places of initial discontinuity of curvature of the generating line of the 

shell. 

Figs.25 a — b illustrate the iVi force in the shell along the generating line for the 

two successive times. Figs.26 a — b illustrate the tangential to the shell N2 force in the 

orthogonal direction for the same times. Figs.27 a — c show the profiles of the force Q 

orthogonal to the tangent plane. 

Fig.28 illustrates the temperature increase in the shell due to irreversible processes. At 

the initial instant it has the zero level. It is seen that the maximal increase of temperature 

can be found in the zones of maximal gradients of curvature of the generating line. 

Figs.29 a — d show the accumulation of the specific dissipation D in the shell for 

successive times. The growth of specific dissipation is maximal in the zones of maximal 

gradients of curvature of the generating line and in the zones of maximal deformations as 

well (the midle point). 

The results show that for axisymmetrical shells under the influence of a uniform in- 

ternal loading the damaged zones are likely to appear in the zones of maximal curvature 

gradients and in the zones of maximal expansion. Thus the presence of angles essentially 

increases the probability of a breakup contrary to the spherical shape of the containment 

that is proved to be optimal for the cases of uniform internal loading. This coinsidence of 

the numerical results with the conclusions derived from the existing theoretical solutions 

makes us sure that the worked out model of the damageable thermoviscoelastic laminated 

composite material adequately describes the physical processes in internal loading. 
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2.3.2     Shell parameters in nonuniform dynamical loading. 

To investigate the behaviour of a shell in nonuniform loading the dynamics of wall loading 

was assumed to be that determined in the section 2.1. The characteristic size of the shell 

was assumed the following: length - Ira, radius - 0.5m, initial wall thickness - 0.5- 10~2ra. 

The size of the shell corresponds with that of the containment described in 2.1. Thus the 

present shell is twice smaller than the one investigated in the previous section in a uniform 

loading. To keep the similarity the thickness was also reduced twice in comparisson with 

the previous case. That agrees with the static similarity criterion but of course can 

introduce differences for a dinamical case. 

The Figs.30a — ra show the internal wall pressure distribution along the generating 

line of the containment (the lagrangian coordinate s) for different times for the case of 

nonuniform loading described in the section 2.1. It is seen that in the very beginning of 

the process there is a sharp pressure increase near the bottom (Figs.30.a — b.) that is 

accompanied by the increase of pressure near the side walls in reflected waves (Figs.30.c — 

d). But the high loadings are not durable and pressure decays very quichly due to the 

influence of the rarefaction waves. After the multiple reflection from the upper wall 

(the right hand side of the figure) and the pressure increase(Fig.30./ — h) the loading 

stabilizes and small axial oscillations of pressure can be observed (Figs.30.k — ra). The 

mean pressure in the containment finally is much less than that in the previous case for 

the uniform loading. 

Figs.31.a — e illustrate the behaviour of tangential displacement u in nonuniform loa- 

ding for the successive times. The displacements are oscillating nonsymmetrically in the 

initial stage of the process but finally they form a steady profile similar to that for the 

case of uniform loading. Comparisson of the Fig.31.e with the Fig. 11.b testifies the fact. 

Fig.32.o — e illustrates the changes in normal displacements w of the shell. It is seen 

that the sell's elements start mooving in the left hand side (the bottom wall of the shell) 

and gradually all the shell is being involved into motion. By the time internal pressure 

comes to a practically steady uniform distribution the normal displacements form a profile 

(Fig.32.e.) similar to that for the case of uniform loading described above (Fig.10.fr). 

The Figs.33.a — h and Figs.34.a — / illustrate the velocities of shell's elements in tan- 

gential to the generating line and normal directions respectively for successive times. It is 

seen that relatively large elastic oscillations present in the beginning are being moderated 

in the longrun by the increasing dissipation. 
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The dynamics of the dissipation function for the shell is shown in Figs.35.a — c. It 

is seen that the dissipation function has not reached its critical value by the time of the 

pressure stabilization inside the containment. That happened due to the fact that even 

high but short term loadings do not bring much damages to the material due to the 

relaxations induction. Thus the model is able to take into account the relaxation time for 

accumulation of damages. 

The successive stages of the accumulation of damages in shear a are shown in Figs.36a— 

/■ 

The last time moment reflected in the figures actually is not the last one for the 

continuous destruction of the material though the mean internal pressure is rather low 

already. The presence of large differences in the total and elastic deformations (Figs.37 

and 38) shows that the relaxation process is not finished yet and the dissipation will be 

still increasing for some time. But it is not likely to surpass the criterion. 

Fig.39 shows the distribution of temperature deviations in the shell from the initial 

state. The temperature increase in the right hand side is due to the growth of dissipation. 

The decrease of temperature in the left hand side is due to cooling of the material in elastic 

expansion that surpasses the influence of the dissipation growth. The local maxima of 

temperature in the zones of discontinuity of curvature are due to the influence of the 

growth of dissipation that is maximal within these zones. 

The present example illustrates the fact that nonunifomities of loading being stabilized 

during a relatively short period of time bring to the deformed picture similar to the case 

of uniform loading. The intense short term loads bring less accumulated damages than 

durable loads of smaller values. 
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CONCLUSIONS 

The model of damageable thermoviscoelastic composite material was worked out during 

the contract period incorporating the thermodynamic breakup criterion based on the 

critical value of the total dissipation being the sum of mechanical dissipation, thermal 

dissipation and dissipation in continuous destruction causing accumulation of damages in 

tension, shear and delamination. The detailed description of the general mathematical 

model and methods to determine the critical dissipation can be found in the interim 

reports. 

The present report contains the results of numerical investigations of behaviour of 

a composite shell of a containment under the influence of internal dynamical loading 

incorporating the worked out model for a damageable laminate. To demonstrate the 

utility of the mathematical model it was incorporated into a hydrocode and applied for 

the solution of the problem of dynamical deforming of a composite shell in a uniform and 

nonuniform loading caused by the internal explosion. 

The model makes it possible to determine the formation and growth of potentially 

damaged zones taking into account nonuniformities of shell's parameters distribution due 

to loading and/or curvature nonuniformities. The material constants for the model had 

been taken arbitrary. Thus the results of the described numerical experiments are mostly 

qualitative. Analysis of the results shows the utility of the worked out mathematical 

model. 
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Problem parameters file 
Thick membrane of composite materials under loading 

TatJe   i. 

50 Gas: grid points along OX 
50 Gas: grid points along OR 
3.00000e+000 Gas: total domain length 
1.00000e+000 Gas: total domain radius 
1.00000e+005 Gas: initial pressure 
3.00000e+002 Gas: initial temperature 
2.90000e-002 Gas: molar weight 
1.40000e+000 Gas: adhiabatic ratio 
1.00000e+007 Pressure behavior constants: amplitude 
1.00000e+001 charact.radius 
1.00000e-004 charact.time 
601 Wall: number of nodes 
1.00000e+000 Radius 
2.00000e+000 Main section length 
2.00000e-001 Corners' radius 
1.00000e-002 Membrane thickness 
6.10000e-001 Volume fraction of component 1 
9.40000e+010 Compl: Lame coefficient La 
5.3 0000e+010 Comp 1: Lame coefficient Mu 
2.00000e-005 Compl: Volume thermal extendibility 
1.00000e+003 Compl: Spec, heat capacity at constant deformations 
1.60000e+003 Compl: Density 
1.00000e-004 Comp 1: Relaxation time 
7.54000e+009 Comp2: Lame coefficient La 
1.89000e+009 Comp2: Lame coefficient Mu 
1.50000e-004 Comp2: Volume thermal extendibility 
2.00000e+003 Comp2: Spec, heat capacity at constant deformations 
1.30000e+003 Comp2: Density 
1.00000e-002 Comp2: Relaxation time 
2.73000e+002 Initial temperature 
1.00000e+000 Unknown damadge constant Big Lambda 
1.00000e+000 Unknown damadge constant Big Lambda-Delta 
1.00000e+004 Unknown damadge constant Big Omega 
1.00000e+000 Unknown damadge constant Big A 
1.00000e+004 Unknown damadge constant Big C 
1.00000e+004 Unknown damadge constant Big D 
1.00000e-002 Comp 1: damadge constant E_* 
7.00000e-003 Compl: damadge constant EAt_* 
3.00000e-003 Comp2: damadge constant E_* 
2.00000e-003 Comp2: damadge constant EAt_* 
5.00000e-003 Damadge constant Delta_* 
1.00000e+007 Maximal dissipated energy 

11296 
D 


